
Building interactive web apps
with the R package shiny

Hanne Oberman
Slides available from hanneoberman.github.io/presentations
(https://hanneoberman.github.io/presentations/)

04-12-2024

https://hanneoberman.github.io/presentations/
https://hanneoberman.github.io/presentations/

(https://gallery.shinyapps.io/063-superzip-example/)

2/94

https://gallery.shinyapps.io/063-superzip-example/
https://gallery.shinyapps.io/063-superzip-example/
https://gallery.shinyapps.io/063-superzip-example/

What we’ll discuss

1. The shiny framework

2. The user interface (UI)

3. The server

4. Advanced topics

5. Take-aways

3/94

Case study

The palmer penguins (https://allisonhorst.github.io/palmerpenguins/) penguins
dataset (DOIDOI 10.5281/zenodo.396021810.5281/zenodo.3960218).

4/94

https://allisonhorst.github.io/palmerpenguins/

Case study

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 39.1 18.7 181 3750 male 2007

Adelie Torgersen 39.5 17.4 186 3800 female 2007

Adelie Torgersen 40.3 18.0 195 3250 female 2007

Adelie Torgersen NA NA NA NA NA 2007

Adelie Torgersen 36.7 19.3 193 3450 female 2007

Adelie Torgersen 39.3 20.6 190 3650 male 2007

library(palmerpenguins)
head(penguins)

5/94

Case study

6/94

Our goal

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

7/94

Slides available from hanneoberman.github.io/presentations
(https://hanneoberman.github.io/presentations/)

8/94

https://hanneoberman.github.io/presentations/
https://hanneoberman.github.io/presentations/

The shiny framework

The basics

What is shiny?

What is a shiny app?

An R package for building shiny apps.·

A fully interactive (web) application, which can be:·

build as a dashboard;

hosted online on a webpage;

included in R Markdown documents.

-

-

-

10/94

The aim

Why use shiny?

To create apps!

Make your R workflows:

·

·

interactive (point-and-click style);

reproducible for non-coders;

look instantly professional.

-

-

-

11/94

The package

What does shiny offer?

A collection of wrapper functions to write “app languages”:

Developed by Posit (https://posit.co/), so documentation and support are
more or less guaranteed.

·

geared toward R users who have zero experience with web development;

no knowledge of HTML/CSS/JavaScript required;

but you can extend it with CSS themes, HTML widgets, and JavaScript
actions.

-

-

-

·

12/94

https://posit.co/

How to build a shiny app?

A. Create a file called app.R and add
shiny components*

B. In RStudio: File → New file → Shiny
Web App…

*file name and components are non-
negotiable!

The template app

13/94

The template app

Number of bins: Bandwidth adjustment:
0.2 21

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

14/94

20

The components

What does a shiny app consist of?

A user interface (UI):

A server:

·

the visible, interactive part;

e.g., a web app or dashboard.

-

-

·

the invisible, processing part;

e.g., your own computer or shinyapps.io (shinyapps.io).

-

-

library(shiny)
ui <- # some code to generate the UI
server <- # some code to generate the server
shinyApp(ui = ui, server = server)

15/94

http://127.0.0.1:7388/shinyapps.io

Starting point

library(shiny)
ui <- # some code to generate the UI
server <- # some code to generate the server
shinyApp(ui = ui, server = server)

16/94

An empty app

library(shiny)
ui <- fluidPage()
server <- function(input, output) {}
shinyApp(ui = ui, server = server)

17/94

Our app

18/94

Recap

Which two components does a shiny app require?

What part of the app can be thought of as the ‘front-end’?

Do the computations need to be performed locally?

·

·

·

19/94

Tips

Don’t rush into coding when you should be thinking.

Before building a shiny app, think about:

What is the app aimed at?

Who are the end users of your app? Are they tech-literate?

In what context will the app be used? On what machines (e.g., because of
screen size)?

·

·

·

20/94

Tips

While building a shiny app:

KISS: Keep It Simple, Stupid;

Use a design/UI first approach;

Build the front-end and the back-end separately;

If you copy something just once, make it a function;

Avoid unnecessary complexity and ‘feature creep’.

·

·

·

·

·

21/94

Tips

After building a shiny app:

Note. We’ll get back to this later!

Share the app;

Make it last.

·

·

22/94

23/94

The UI

Starting point

library(shiny)
ui <- # some code to generate the UI
server <- # some code to generate the server
shinyApp(ui = ui, server = server)

25/94

Filling in the UI

The shiny function fluidPage()

ui <- fluidPage()

generates an ‘empty canvas’ for shiny apps;

en-captures all other UI elements.

·

·

26/94

Adding some text

To show text in our app, we can just add character/string objects inside
fluidPage():

ui <- fluidPage(
 "Palmer Penguins",
 "An interactive visualization"
)

27/94

Our app

Palmer Penguins An interactive visualization

28/94

Adding formatted text

For formatted text, shiny has many functions that are wrappers around HTML
tags. For example:

Note. If you already know HTML, you don’t need to use these wrapper functions!

h1(): top-level header;

h2(): secondary header;

strong(): bold text;

em(): italicized text;

br(): line break;

img(): image;

a(): hyperlink, etc.

·

·

·

·

·

·

·

29/94

Adding formatted text

Let’s replace the UI part of our code with the following:

ui <- fluidPage(
 h1("Palmer penguins"),
 "An",
 em("interactive"),
 br(),
 strong("visualization")
)

30/94

Our app

Palmer penguins
An interactive
visualization

31/94

Adding a title

The shiny function titlePanel()

ui <- fluidPage(
 titlePanel("Palmer penguins: An interactive visualization")
)

adds a visible big title-like text to the top of the page;

sets the “official” title of the web page (i.e., displayed at the name of the tab in
the browser).

·

·

32/94

Our app

Palmer penguins: An interactive visualization

33/94

Adding a layout

The simple sidebar layout:

provides a two-column layout;

with a smaller sidebar and a larger main panel;

visually separates the input and output of the app.

·

·

·

ui <- fluidPage(
 titlePanel("Palmer penguins: An interactive visualization"),
 sidebarLayout(
 sidebarPanel("[inputs]"),
 mainPanel("[outputs]")
)
)

34/94

Our app

Palmer penguins: An interactive visualization
[inputs]

[outputs]

35/94

Adding an input element

Inputs allow users to interact with a shiny app.

We’ve seen two types already:

Number of bins: Bandwidth adjustment:

selectInput() creates a drop-down menu;

sliderInput() creates a numeric scale.

·

·

0.2 21

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

36/94

20

Adding an input element

Can you guess what kind of element these input functions will create?

textInput();

dateInput();

checkboxInput().

·

·

·

37/94

Adding input elements

38/94

Adding an input element

Which function would suit an input element for the variable island?

Location Biscoe

Dream

Torgersen

radioButtons(
 inputId = "location",
 label = "Location",
 choices = c("Biscoe", "Dream", "Torgersen")
)

39/94

Adding an input element

All input functions have the same first two arguments:

These argument names are typically dropped from the ...Input() function call:

Note. Every input in your app must have a unique inputId; the app will not work properly
otherwise! So keep your inputIds simple and sensible.

inputId, the name by which shiny will refer to this input when you want to
retrieve its current value;

label, which specifies the text displayed right above the input element.

·

·

radioButtons("location", "Location", choices = c("Biscoe", "Dream", "Torgersen"))

40/94

Adding an input element

The resulting UI code looks like:

ui <- fluidPage(
 titlePanel("Palmer penguins: An interactive visualization"),
 sidebarLayout(
 sidebarPanel(
 radioButtons("location", "Location",
 choices = c("Biscoe", "Dream", "Torgersen"))
),
 mainPanel("[outputs]")
)
)

41/94

Our app

Palmer penguins: An interactive visualization
Location

Biscoe

Dream

Torgersen

[outputs]

42/94

Adding another input element

Let’s create an input element for the variable body_mass_g as well. Which input
function(s) should we use?

Weight
2kg 7kg3kg 5kg

2 3 4 5 6 7

sliderInput("weight", "Weight",
 min = 2, max = 7, value = c(3, 5), post = "kg")

43/94

Adding another input element

The full UI code is now:

ui <- fluidPage(
 titlePanel("Palmer penguins: An interactive visualization"),
 sidebarLayout(
 sidebarPanel(
 radioButtons("location", "Location",
 choices = c("Biscoe", "Dream", "Torgersen")),
 sliderInput("weight", "Weight",
 min = 2, max = 7, value = c(3, 5), post = "kg")
),
 mainPanel("[outputs]")
)
)

44/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

[outputs]

45/94

Adding an output element

Outputs are shown in the UI, but created on the server side.

That’s why we add placeholders for the outputs in the UI.

Placeholders:

Determine where an output will be;

Give outputs a unique ID to link it to the server;

Won’t actually show anything, yet.

·

·

·

mainPanel(
 "[plot placeholder]", plotOutput("scatterplot")
)

46/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

[plot placeholder]

47/94

Adding another output element

The placeholder doesn’t show anything, because we haven’t created any figure
yet on the server side.

But first, let’s add another output element:

Note. We added a few line breaks br() between the two outputs, so that they aren’t crammed
on top of each other.

mainPanel(
 "[plot placeholder]", plotOutput("scatterplot"),
 br(),
 br(),
 "[table placeholder]", tableOutput("descriptives")
)

48/94

The complete UI

ui <- fluidPage(
 titlePanel("Palmer penguins: An interactive visualization"),
 sidebarLayout(
 sidebarPanel(
 radioButtons("location", "Location",
 choices = c("Biscoe", "Dream", "Torgersen")),
 sliderInput("weight", "Weight",
 min = 2, max = 7, value = c(3, 5), post = "kg")
),
 mainPanel(
 "[plot placeholder]", plotOutput("scatterplot"),
 br(),
 br(),
 "[table placeholder]", tableOutput("descriptives")
)
)
)

49/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

[plot placeholder]

50/94

Recap

How can formatted text be shown in a shiny app?

What is mandatory and unique in input element functions?

How do you define where an output element will be shown?

·

·

·

51/94

Tips

When building the front-end of your app:

Work on the general appearance first, anything that does not rely on
computation (e.g., tabs, inputs, outputs);

Use mock data and/or text (build an ‘ipsum-app’);

Make the app self-evident; the main usage of the app should not require
reading any manual.

·

·

·

52/94

53/94

The server

Starting point

library(shiny)
ui <- # some code to generate the UI
server <- # some code to generate the server
shinyApp(ui = ui, server = server)

55/94

The server function

The server function:

*exceptions apply!

server <- function(input, output) {}

requires* input and output IDs from the UI;

builds output objects via render...() functions;

saves the generated output into an output list.

·

·

·

56/94

Building static output

Let’s use the exception to the rule to develop our server step-by-step.

ggplot(penguins,
 aes(x = flipper_length_mm, y = bill_length_mm, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_palmer() +
 labs(title = "Flipper and bill length by species (static)")

57/94

Building static output

58/94

Building static output

server <- function(input, output) {
 output$scatterplot <- renderPlot({
 ggplot(penguins,
 aes(x = flipper_length_mm, y = bill_length_mm, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_palmer() +
 labs(title = "Flipper and bill length by species (static)")
 })
}

59/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

60/94

Building interactive output

To make the figure interactive, we have to link the server to the UI inputs.

Whenever the selected location changes, the plot title will update.

server <- function(input, output) {
 output$scatterplot <- renderPlot({
 ggplot(penguins,
 aes(x = flipper_length_mm, y = bill_length_mm, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_palmer() +
 labs(title = paste("Flipper and bill length at", input$location))
 })
}

61/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

62/94

Building an interactive visualization

To incorporate interactivity in the visualization, we have to filter the data based
on the input values.

server <- function(input, output) {
 output$scatterplot <- renderPlot({
 filtered <- penguins %>%
 filter(island == input$location,
 body_mass_g >= input$weight[1] * 1000,
 body_mass_g <= input$weight[2] * 1000
)
 filtered %>%
 ggplot(aes(x = flipper_length_mm, y = bill_length_mm, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_palmer() +
 labs(title = "Flipper and bill length")
 })
}

63/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

64/94

Building an interactive summary table

To complete our app we need to build an interactive output for the table
placeholder and add it to the server:

output$descriptives <- renderTable({
 filtered <- penguins %>%
 filter(island == input$location,
 body_mass_g >= input$weight[1] * 1000,
 body_mass_g <= input$weight[2] * 1000
)
 filtered %>%
 group_by(species) %>%
 summarise(mean_bill = mean(bill_length_mm, na.rm = TRUE),
 mean_flip = mean(flipper_length_mm, na.rm = TRUE))
})

65/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

66/94

67/94

Intermezzo

Reactivity

Short break from our app to talk about a crucial concept in shiny: reactivity.

Reactivity enables your outputs to react to changes in inputs.

On the most basic level, it means that when the value of a variable x changes,
anything that relies on x (i.e. has x in it) gets re-evaluated.

Consider the following code

What is the value of y?

x <- 5
y <- x + 1
x <- 10

69/94

Reactivity

What is the value of y?

In ordinary programming, the value of y is still 6.

In reactive programming, however, x and y are reactive expressions. Now, the
value of y updates reactively, and becomes 11.

Reactivity is the foundation for the responsiveness of shiny apps.

x <- 5
y <- x + 1
x <- 10

70/94

Reactivity

In our server, we implicitly use reactivity when we filter the data for our outputs:

Whenever one of the inputs changes, our outputs change with it. But, this part of
code is duplicated, because we didn’t use a reactive variable.

filtered <- penguins %>%
 filter(island == input$location,
 body_mass_g >= input$weight[1] * 1000,
 body_mass_g <= input$weight[2] * 1000
)
)

71/94

Reactivity

We can avoid code duplication by:

defining a reactive variable that will hold the filtered dataset;

using that variable in the render...() functions.

·

·

filtered <- reactive({
 penguins %>%
 filter(island == input$location,
 body_mass_g >= input$weight[1] * 1000,
 body_mass_g <= input$weight[2] * 1000
)
})

72/94

Reactivity

What is going on behind the scenes?

This can be visualized in a dependency tree, to show what value depends on
what other value.

The location input changes →
shiny ‘looks’ at the reactive(s) that depend on location →

filtered() is re-evaluated →

shiny ‘looks’ at the reactive(s) that depend on filtered() →
The two render...() functions are re-executed →

The plot and the table output are updated.

·

·

·

·

·

·

73/94

Reactivity

74/94

75/94

The server (continued)

The final app

server <- function(input, output) {
 filtered <- reactive({
 penguins %>%
 filter(island == input$location,
 body_mass_g >= input$weight[1] * 1000,
 body_mass_g <= input$weight[2] * 1000
)
 })

 output$scatterplot <- renderPlot({
 filtered() %>%
 ggplot(aes(x = flipper_length_mm, y = bill_length_mm, color = species)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 scale_color_palmer() +
 labs(title = "Flipper and bill length")
 })

 output$descriptives <- renderTable({
 filtered() %>%
 group_by(species) %>%
 summarise(mean_bill = mean(bill_length_mm, na.rm = TRUE),
 mean_flip = mean(flipper_length_mm, na.rm = TRUE))
 })
}

77/94

Our app

Palmer penguins: An interactive visualization
Location

Weight

Biscoe

Dream

Torgersen

2kg 7kg3kg 5kg

2 3 4 5 6 7

78/94

Recap

What is the common naming element in the set of shiny output functions?

How can you make the server side more efficient and easier to debug?

How are the UI and server sides linked?

·

·

·

79/94

Tips

When building the back-end of your app:

Use sensible non-reactive defaults while developing (e.g., data <- mtcars
instead of data <- reactive(...).);

Think about what could to be ‘hard coded’ in the final app too, because of the
reactivity vs. speed trade-off;

Extract the complex (but non-reactive) processing functions and put them in
separate files;

Add user feedback to make server-side requirements explicit (e.g., input
validation, pop-up messages, loading icons).

·

·

·

·

80/94

81/94

Advanced topics

Design

Use more complex layouts, such as tabs or dashboards;

Make the output elements ‘clickable’ with plotly and DT;

Change input element options from the server side with update...()
functions.

·

·

·

83/94

Interactive output elements

Interactive plots with {plotly}
...
plotlyOutput("scatterplot")
...
output$scatterplot <- renderPlotly({...})
...

Interactive tables with {DT}
...
dataTableOutput("descriptives")
...
output$descriptives <- renderDataTable({...})
...

84/94

Extended app

85/94

Robustness

Run the app in the viewer panel, a separate window, and your browser;

Monkey test it (i.e., click EVERYTHING);

Provide the wrong inputs (e.g., a corrupt data file, a file with the ‘wrong’
extension, an ‘impossible’ numeric input, etc.);

Modularize your app;

Use the golem framework for production-grade shiny apps (but decide up-
front!).

·

·

·

·

·

86/94

Separating tabs

...
tabsetPanel(
 tabPanel("Plot", plotOutput("scatterplot")),
 tabPanel("Table", tableOutput("descriptives"))
)
...

87/94

Extended app

88/94

Deployment

Deploy your app on shinyapps.io (https://www.shinyapps.io/):

Note. You could also host your app on your own website. Or don’t deploy it at all (e.g., for
privacy reasons).

You’ll have a link to use/share the app online;

Non-R-users will be able to interact with your app;

You can tweak your app to cache certain outputs, or have several users in one
session (like Google Drive documents);

But, with a free account, your app will be public;

And if your app is too popular, you will eventually need to pay server costs.

·

·

·

·

·

89/94

https://www.shinyapps.io/

90/94

Take-aways

Summary

shiny allows you to build interactive (web) apps from R;

shiny apps consist of two parts, the user interface (UI) and the server:

This is only the tip of the iceberg, there are many more things you can do with
shiny.

·

·

In the UI, you design what is shown to the user,

In the server, you do all the modeling and building of the outputs,

You link the UI and the server to make the app interactive,

To optimize these interactions, you can use reactive expressions;

-

-

-

-

·

92/94

Inspiration

Check out these amazing resources:

And look for examples here:

RStudio’s introduction to shiny webinar
(https://www.rstudio.com/resources/webinars/introduction-to-shiny/);

Hadley Wickham’s book Mastering Shiny (https://mastering-shiny.org/);

The official cheatsheet (https://rstudio.com/resources/cheatsheets/);

The more advanced Engineering Shiny (https://engineering-shiny.org/);

This webinar on Modularizing Shiny (https://www.youtube.com/watch?
v=ylLLVo2VL50).

·

·

·

·

·

The Shiny Gallery (https://shiny.rstudio.com/gallery/);

The annual shiny contest (https://www.rstudio.com/blog/winners-of-the-2nd-
shiny-contest/).

·

·

93/94

https://www.rstudio.com/resources/webinars/introduction-to-shiny/
https://www.rstudio.com/resources/webinars/introduction-to-shiny/
https://mastering-shiny.org/
https://rstudio.com/resources/cheatsheets/
https://engineering-shiny.org/
https://www.youtube.com/watch?v=ylLLVo2VL50
https://www.youtube.com/watch?v=ylLLVo2VL50
https://shiny.rstudio.com/gallery/
https://www.rstudio.com/blog/winners-of-the-2nd-shiny-contest/
https://www.rstudio.com/blog/winners-of-the-2nd-shiny-contest/

Thank you!

94/94

